Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements

نویسندگان

  • Manuel R. Ferdinandus
  • Matthew Reichert
  • Trenton R. Ensley
  • Honghua Hu
  • Dmitry A. Fishman
  • Scott Webster
  • David J. Hagan
  • Eric W. Van Stryland
چکیده

We present a technique in which small solute nonlinearities may be extracted from large solvent signals by performing simultaneous Z-scans on two samples (solvent and solution). By using a dual-arm Z-scan apparatus with identical arms, fitting error in determining the solute nonlinearity is reduced because the irradiance fluctuations are correlated for both the solvent and solution measurements. To verify the sensitivity of this technique, the dispersion of nonlinear refraction of a squaraine molecule is measured. Utilizing this technique allows for the effects of the solvent n2 to be effectively eliminated, thus overcoming a longstanding problem in nonlinear optical characterization of organic dyes. © 2012 Optical Society of America OCIS codes: (190.0190) Nonlinear optics; (190.4400) Nonlinear optics, materials; (190.4710) Optical nonlinearities in organic materials. References and links 1. M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002). 2. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010). 3. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). 4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). 5. Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012). 6. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). 7. J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All-optical switching in a nonlinear GaAlAs X junction,” Opt. Lett. 18(14), 1153–1155 (1993). 8. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). 9. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010). 10. J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large thirdorder nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006). 11. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008). 12. M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009). 13. C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, and Y. Nie, “Thirdand fifth-order optical nonlinearities in a new stilbazolium derivative,” J. Opt. Soc. Am. B 19(3), 369–375 (2002). 14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). 15. H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991). #176922 $15.00 USD Received 26 Sep 2012; revised 9 Nov 2012; accepted 15 Nov 2012; published 19 Nov 2012 (C) 2012 OSA 1 December 2012 / Vol. 2, No. 12 / OPTICAL MATERIALS EXPRESS 1776 16. Q.Gong, J.Li, T.Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998). 17. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003). 18. R. Dawley, Sales Department, Starna Cells, Inc., P.O. Box 1919, Atascadero, CA, 93423 (personal communication, 2012). 19. S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010). 20. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964). 21. OriginLab (2012). Origin (version 8.6.0) [Computer software]. Northampton, MA. Retrieved June 1, 2012. Available from http://www.OriginLab.com. 22. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998). 23. J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965). 24. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971). 25. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008). 26. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990). 27. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996). 28. B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008). 29. R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009). 30. K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution

The aim of this study was to evaluate the adsorption capacity of the novel coated activated carbon by chitosan for removal of Cr (VI) and Cd (II) ions from single and bi-solute dilute aqueous solutions. In addition, the adsorption abilities of activated carbon (AC), chitosan (CH) and chitosan / activated carbon composite (CHAC) have been compared. Adsorption studies were performed in a batch sy...

متن کامل

Measurement of nondegenerate nonlinearities using a two-color Z scan.

A simple dual-wavelength (two-color) Z-scan geometry is demonstrated for measuring nonlinearities at frequency omega(p) owing to the presence of light at omega(e). This technique gives the nondegenerate two-photon absorption (2PA) coefficient beta(omega(p); omega(e)) and the nondegenerate nonlinear refractive index n(2)(omega(p); omega(e)), i.e., cross-phase modulation. We demonstrate this tech...

متن کامل

Nonlinear Optical Properties of Rigid Polyurethane Foam/SiO2 Nanocomposite

Polyurethane closed cell (PUCC)/SiO2 nanocomposites have been prepared by using in situ polymerization approach. The third-order optical nonlinearities of PUCC/SiO2 nanocomposites, dissolved in DMF are characterized by Z-scan technique at the measurement wavelength of 532 nm. The nonlinear refractive (NLR) indices and nonlinear absorption (NLA) coefficients of samples were calculated from close...

متن کامل

Measurements of nonlinear refractive index in scattering media.

We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We com...

متن کامل

Nonlinear refractive index measurement on pure and Nd doped YAG ceramic by dual arm Z-scan technique

Transparent ceramics gain much attention as an alternative medium for high power ultra-short lasers because of its superior thermal properties over single crystals. Measurement of nonlinear refractive index is essential to understand the limit of such material for ultra-short laser generation. Dual arm Z-scan technique was employed to measure n2 for single crystal and ceramic at the same time t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012